The Use of Thermal Sprayed Zinc
Alternative to Hot Dipped Galvanizing

Joseph G. Radzik, Director of Engineering
Research & Development
Tyco Fire & Building Products
INTRODUCTION (3)
CATHODIC PROTECTION (4)
INDEPENDENT TESTING
CONCLUSION (5)
ABOUT THE AUTHOR (6)
INTRODUCTION

The Use of Thermal Sprayed Zinc Alternative to Hot Dipped Galvanizing

INTRODUCTION

Galvanizing has a historical background of use in reducing corrosion on piping products.\(^1\) Hot dipped galvanizing results in a cathodic protection system utilizing zinc as a sacrificial anode material dispersed on the surface of iron or steel products.

Hot dipped galvanizing has been used in various markets for over 100 years as a method of corrosion protection. The basic steps to the process are as follows:

1. Parts are degreased in a hot alkaline solution.
2. Surface rust and scale are removed.
3. Parts are immersed in a liquid flux to prevent oxidation prior to dipping in the molten zinc.
4. Parts are immersed in the molten bath of zinc at a temperature around 850 °F.
5. The parts are withdrawn from the galvanizing bath and the excess zinc is removed by draining or centrifuging and allowed to cool and dry.
6. Parts are inspected to complete the process.

In the hot dipped galvanizing method, it is important to keep the temperature of the bath above the temperature of molten zinc. This requires a large fuel consumption and a considerable loss of zinc occurs. Increased inspection and rework due to zinc drips may be required on complicated shapes such as grooved couplings and fittings.

An alternative to the hot dipped galvanizing process is the use of Thermal Sprayed Zinc. Like galvanizing, Thermal Sprayed Zinc also provides a cathodic protection system and is replacing hot dipped galvanizing in many applications for reasons of effectiveness and economics.

Thermal spray coatings are widely used in preventing corrosion of many materials. A common application is the use of zinc to protect iron substrates. In this method, the surface of the metal is prepared by abrasive blast cleaning to ensure it is cleaned and roughened. Metal wire or powder is fed at a controlled rate into a flame or arc spraying process and the atomized metal impinges upon the surface being coated and becomes bonded to it. This process is easily adapted to production environments and is especially suited to complicated surfaces found in grooved couplings and fittings.

\(^1\) It is the Designer's responsibility to select products suitable for the intended service and to ensure that materials are acceptable for the specific application. (3)
CATHODIC PROTECTION

All metals have properties that cause them to react as an anode or a cathode when coupled to another material in a corrosive environment. The determination as to how two metals will react when coupled in a corrosive environment is based on a galvanic series shown below.

Galvanic Series

Anodic
- Magnesium
- Zinc
- Cadmium
- Aluminum
- Iron
- Steel
- Stainless Steels (active)
- Brass
- Copper
- Monel
- Lead
- Tin
- Silver
- Gold

Cathodic
- Platinum

The application of zinc (anodic coating) to iron substrates forms a protective layer and results in a corrosion protection referred to as cathodic protection or sacrificial protection. The substrate iron becomes the cathode and the zinc coating becomes the sacrificial anode.
INDEPENDENT TESTING

Representative samples of Thermal Sprayed Zinc and Hot Dipped Galvanized ductile iron castings conforming to ASTM\(^2\) A 536, Grade 65-45-12, were subjected to a 5% salt spray fog test at 95 °F in accordance with ASTM B 117. Coating thickness was measured in the range of 3.4 to 5.5 mils for all samples evaluated, which conforms to the industry requirement for grooved piping products. An independent laboratory NADCAP accredited in materials and non-destructive testing methods performed the testing.

After 120 hours exposure, the Hot Dipped Galvanized samples exhibited red corrosion. The Thermal Sprayed Zinc samples did not exhibit red rust corrosion.

Testing was continued on the Thermal Sprayed Zinc samples for an additional 72 hours for a total of 192 hours and examined for signs of red rust. None of the Thermal Sprayed Zinc samples exhibited this condition and testing was stopped.

CONCLUSION

Independent laboratory testing verified that Thermal Sprayed Zinc exhibited superior corrosion resistance to that of Hot Dipped Galvanizing for ductile iron piping products when tested in accordance with ASTM B 117.

Other benefits of Thermal Sprayed Zinc making it a desirable alternative to hot dipped galvanizing are superior ease of application to complex shapes, the ability to control the coating thickness and superior adhesion of the zinc to the iron substrate.

\(^2\) Available from American Society for Testing and Materials, West Conshohocken, PA 19428-2959
The Use of Thermal Sprayed Zinc Alternative to Hot Dipped Galvanizing

ABOUT THE AUTHOR

Joseph G. Radzik
Director of Engineering, Research & Development

Mr. Radzik's interests include the research, design and applications of Grooved and CPVC piping products. He has been involved in piping products for more than 25 years. Mr. Radzik's engineering and applications knowledge of piping products gave him the opportunity to work as Senior Project Engineer and later as Engineering Manager for Central Sprinkler Company, where he was responsible for the technical development of their grooved product line. Mr. Radzik is currently the Director of Engineering for Tyco Fire & Building Products, which includes the Central Grooved Piping Products and Tyco CPVC Piping Products brands. His responsibilities include the engineering and quality assurance of Grooved and CPVC piping products worldwide.

In addition to his research into piping products, Mr. Radzik has authored published articles in "Heating/Piping/Air Conditioning", "FPC/Fire Protection Contractor", "American Society Of Sanitary Engineering News Bulletin" and "Plant Engineering". He continues his involvement in the industry with memberships including The American Society of Mechanical Engineers, National Fire Protection Association, National Association of Corrosion Engineers and American Water Works Association.

Mr. Radzik is also named on various patents both issued and pending.
WORLD WIDE HEADQUARTERS
Tyco Fire & Building Products
451 N. Cannon Avenue
Lansdale, PA 19446
215-362-0700, Fax 215-362-5385
www.Tyco-Fire.com

UNITED STATES
Central Sprinkler Company
451 N. Cannon Avenue
Lansdale, PA 19446
215-362-0700, Fax 215-362-5385

Brea, CA: 714-993-6111, Fax 714-993-6043
Decatur, GA: 404-243-7336, Fax 404-244-7375
King of Prussia, PA: 610-239-9925, Fax 610-239-9936
Jessup, MD: 301-604-7133, Fax 301-604-7138
Carol Stream, IL: 630-595-2345, Fax 630-595-2557
Irving, TX: 972-753-1283, Fax 972-800-0455
Kent, WA: 253-872-6030, Fax 253-872-6547
Avon, MA: 508-583-8447, Fax 508-583-0034
Pompano Beach, FL: 954-781-0866, Fax 954-781-1475
Hayward, CA: 510-265-0625, Fax 510-265-0334
Murray, UT: 801-269-0688, Fax 801-269-0733
Greensboro, NC: 336-274-1222, Fax 919-274-5144
Tigard, OR: 503-620-4203, Fax 503-620-3817
Parma, OH: 216-265-0505, Fax 216-265-8354
Kansas City MO: 816-842-2424, Fax 816-842-4433

Gem Sprinkler & Star Sprinkler
7071 S. 13th Street, Ste. 103
Oak Creek, WI 53154
877-436-9326, Fax 877-866-9250

CANADA
Regional Headquarters
3-304 Stone Road West, Suite 404
Guelph, ON N1G 4W4
519-763-2706, Fax 519-763-4469

LATIN AMERICA
Regional Headquarters
South America, Central America & Caribbean
1500 S.W. 5th Court, Suite A
Pompano Beach, FL 33069
954-781-9866, Fax 954-781-9330

Regional Headquarters – Mexico
Hamburgo 231A Piso 2
Colonia Juarez
Mexico, D.F. 06600 Mexico
525-55-2075766, Fax 525-55-2077566

EUROPE & MIDDLE EAST
Regional Headquarters
Kopersteden 1, NL-7547 TJ Enschede
P.O. Box 198, 7500 AD
Enschede, The Netherlands
31-53-426-4444, Fax 31-53-428-3377

Stockport, UK: 4-161-477-1886, Fax 44161-477-6729
Rodgau Germany: 49-1064-84455, Fax 496106-18177
Coslada Madrid, Spain: 34-1-669-3906, Fax 341-669-2018
Lerneskog, Norway: 76-7-91-77-00, Fax 76-7-91-77-15
Lammhult, Sweden: 46-472-269-880, Fax 464722-269-899
Dublin, Ireland: 353-166-839-82, Fax 353166-822-54
Bolzano, Italy: 39-0471-252-091, Fax 390471-254-058
Milano, Italy: 39-0293548-736, Fax 390293548-690
Dubai, United Arab Emirates: 971-488-38688, Fax 971488-38674
Budapest, Hungary: 3-148-11-383, Fax 36120-34-427
Wels/Thalheim, Austria: 3-0724-65-054, Fax 430724-274-393

ASIA
Regional Headquarters
No. 45 Tuas Avenue 9,
Singapore 639189

Central Sprinkler Company
Singapore: 65-6743-3212, Fax 656743-9181
Shanghai, China: 86-21-5868-3300, Fax 8621-5868-1160
Beijing, China: 86-10-6515-6191, Fax 8610-6515-6157
Chengdu, China: 86-28-869-9440, Fax 8628-666-2538

Gem Sprinkler Company & Star Sprinkler Inc.
Singapore: 65-6861-1655, Fax 656861-1312
Kuala Lumpur, Malaysia: 60-3-8024-6773, Fax 668-8024-2180
Hong Kong: 852-2595-0686, Fax 8522595-5826

Printed in USA © 2002